JORNADA D'ECOSISTEMA DE TRANSFERÈNCIA I INNOVACIÓ EN ENERGIA

SOLS – Spectrum On Demand Light Source

Nanostructured Materials for Optoelectronics and Energy Harvesting Institut de Ciència de Materials de Barcelona (ICMAB-CSIC)

Barcelona, 21st June 2023

Miquel Casademont Viñas

CHALLENGES AND MARKET

Need for more efficient, affordable and environmentally friendly materials and devices.

SOLAR SIMULATORS MARKET IS GROWING

Nowadays a different type of simulator is needed for each application

OPORTUNITY: NEED FOR A **SINGLE DEVICE** THAT INCORPORATES DIFFERENT FEATURES AND CAN BE MODIFIED ON DEMAND ACCORDING TO **THE APPLICATION**, THUS **REDUCING COSTS** AND THE DIVERSITY OF **MACHINERY** IN THE LABORATORY.

<u>CHALLENGE</u>: TO DEVELOP A SOLAR SIMULATOR THAT PROVIDES A LIGHT SOURCE TUNABLE ON DEMAND, WITH A GOOD SPECTRAL RESOLUTION AND THAT CAN WORK UNDER NORMAL CONDITIONS OF TEMPERATURE AND PRESSURE.

SOLUTION: Spectrum On demand Light Source (SOLS)

Current State

- SOLS prototype demonstrated in an operational environment in the lab (TRL4 – TRL5).
- Developing: automation of the filter stage, improving NIR resolution, demonstrator assembly.

Vanor

SOLS added values:

- ✓ Highly tunable light spectrum, from broadband to narrow-band.
- ✓ All-in-one compact device with different types of photovoltaic characterization (PCE, EQE or recombination).
- ✓ Enable novel characterization modes, such as **RAINBOW** solar cells.
- ✓ Study of materials beyond solar farms photovoltaics: photocatalysis, agrivoltaics, light degradation in materials, etc.

Our main competitor are the LEDs solar simulators. However, they present some drawbacks:

- Limited spectral resolution
- Poor illumination dynamic range
- **K** Need of refrigeration
- **K** Very expensive to scale up in illuminated area

DEVELOPMENT PLAN – VALUE PROPOSITION

- Innovative and versatile product based on patented technology and supported by two innovation prizes and several research projects.
- <u>Accelerator of emerging photovoltaic technologies</u> due to its adaptability to the particular requirements of each particular technologies.
- <u>Cost-effective product</u>, which reduces costs for end users by integrating <u>several</u> <u>devices into one</u>.
- The <u>customer is assured of a return</u>. This is due to the precise knowledge of the problems and needs of end-users from our own experience as end-users ourselves.
- <u>Competitive proposition</u> because the customer can count on quality technical advice from a state-of-the-art R&D expert group.
- Ensures <u>constant innovation</u> by being a research group that keeps abreast of new trends and/or scientific/technological issues in the field of photovoltaics.

DEVELOPMENT PLAN – NEXT STEPS

- As for the next steps, <u>turning the actual SOLS lab implementation into a compact</u>, <u>automated setup</u> is crucial to its go-to-market step.
 - Automation of the filtering stage
 - Improving NIR resolution
- After this first step, we are also seeking for:
- <u>a collaboration towards (co-)development</u> of a validated prototype that would finally lead to a commercial exploitation of the SOLS device.
- to reach an <u>agreement to transfer the technology use by sale or license of the</u> <u>patent</u> (exclusive or non-exclusive).

TEAM – The NANOPTO Research Group

Research Lines:

 Optoelectronics of group-IV semiconductor nanostructures

Research Pilars:

Optical Spectroscopy

 Photonic Architectures for Light Management

Materials Processing

• Organic-Inorganic Thermoelectrics

Unió Europea Fons Europeu

Generalitat de Catalunya Departament d'Empresa i Coneixement Secretaria d'Universitats i Recerca

erc

Agència de Gestió

d'Ajuts

AGAUR Universitaris

European Research Council

Members:

- 6 Seniors (permanent)
- 10 Postdocs ٠
- 1 Project Manager
- 10 PhD students

TEAM – The SOLS Research Team

Prof. Alejandro R. Goñi

ICREA Professor. Expert in optical spectroscopy and solid state physics. Broad expertise in design, development and assembly of optical spectroscopy systems, high-pressure techniques and metal halide perovskites.

Prof. Mariano Campoy-Quiles

Expert in materials science and organic photovoltaics. Co-founder of the spin-off Molecular Gate S.L., great experience in technology transfer activities and coordination of industrial projects.

Postdoc. Experience in electronics and Arduino, automation of systems, especially for thermoelectric applications.

Miquel Casademont-Viñas

PhD Student. Organic solar cells, fabrication and characterization. *Co-inventor of the SOLS device patent.*

Albert Harillo

PhD Student. Organic solar cells, fabrication and characterization, especially ternary organic solar cells.

Technician. Practical experience in optics, electronics, automation, Labview design and 3D printing.

MICMAB

EXCELENCIA SEVERO OCHOA

Nanopt

Eulàlia Pujades-Otero

Project Manager. Administrative procedures and support, financial research, knowledge transfer, market research, etc.

TEAM – Projects, Intellectual Property and Others

- PDC2022-134001-I00, Spectrum-on-demand light source for photovoltaic materials characterization (SOLS) "Proof of Concept 2022" call MICINN. Total: 149.500 €, Dec. 2022 – Nov. 2024.
- PID2021-128924OB-I00, Improving solar cell efficiency by spectral matching and charge mobility enhancement (ISOSCELLES), MICINN. Total: 272.250 €, Jan. 2022 Dec. 2024.
- PGC2018-095411-B-I00, Efficient harvesting of visible and infrared solar energy through rainbow architectures (RAINBOW), MICINN. Total: 169.400 €, Jan. 2019 Dec. 2021.

 Patent ES1641.1760: "Spectral shaper illumination device", M. Gibert Roca, M. Casademont Viñas, A. R. Goñi & M. Campoy Quiles

- 1st Prize in the Llavor Cathegory "Premi EmErgEnt" Clúster d'Eficiència Energètica de Catalunya, June 2023.
- Top 10 finalist "Premio Ideas Innovadoras Isabel P. Trabal" Caja de Ingenieros, May 2023.

FUTURE NEEDS - COLLABORATORS, PARTNERS AND OTHER NEEDS

To turn the device into a compact, automated setup:

- ELISAVA, Design and Engineering University U ELISAVA

Co-development Contract:

- Technology Transfer company 🎸 Viromii
- Leading company in the field of solar simulators

Device Validation:

- Fraunhofer Institute **Fraunhofer**
- National Renewable Energy Laboratory (NREL)

🍠 @XRE4S @IREC_Energia

https://xre4s.cat/ https://www.irec.cat/

Contactos:

Prof. Alejandro R. Goñi: <u>goni@icmab.es</u> Prof. Mariano Campoy: <u>mcampoy@icmab.es</u> Miquel Casademont: <u>mcasademont@icmab.es</u> Eulàlia Pujades: <u>epujades@icmab.es</u>

Con financiación de:

